Skip to main content

Japan team creates world's first "crab computer"


Wouldn't your latest generation tablet be way cooler if it ran on live crabs? Thanks to Yukio-Pegio Gunji and his team at Japanā€™s Kobe University, the era of crab computing is upon us ... well, sort of. The scientists have exploited the natural behavior of soldier crabs to design and build logic gates - the most basic components of an analogue computer. They may not be as compact as more conventional computers, but crab computers are certainly much more fun to watch.

Electricity and microcircuits arenā€™t the only way to build a computer. In fact, electronic computers are a relatively recent invention. The first true computers of the 19th and early 20th centuries were built out of gears and cams and over the years many other computers have forsaken electronics for marbles, air, water, DNA molecules and even slime mold to crunch numbers. Compared to the slime mold, though, making a computer out of live crabs seems downright conservative.

The scientists at Kobe university didnā€™t just pop down to the market for their crabs. They focused their attention on a particular species: soldier crabs (Mictyris longicarpus). These are found in on the beaches of Australia and surrounding islands where they regularly provide visitors with surreal performances. Individually, the soldier crabs are timid little blue crustaceans that wonā€™t even go into the water, but when they form into swarms, which can number in the tens of thousands, itā€™s a different matter.

Once set in motion by something like a birdā€™s shadow passing overhead, the soldier crabs tear off like an army of demented robots. They rush about in a strange, boiling mass that seem like exercises in utter chaos, yet the swarm itself moves in a remarkably consistent straight line. This determined, predictable manner of movement is the key to the crab computer.

When two swarms of soldier crabs collide something remarkable happens. Instead of collapsing into a riotous battle, the two swarms meet in a manner thatā€™s as predictable as a pair of billiard balls hitting each other. When two identical billiard balls collide head on they, ideally and all things being equal, rebound off one another in the opposite direction. If they strike at an angle, they fly away from each other at the opposite angle. Itā€™s all very predictable Newtonian mechanics. In the case of soldier crabs itā€™s like two balls of soft modelling clay hitting each other. They squash together at the new, larger swarm and head off at the combined angle of the original swarms with a remarkable degree of predictability.

Exploiting this behavior, the Kobe team figured out how to use the crabs to make logic gates. They did this by placing two swarms of crabs in a simple maze. In one configuration, the swarms were set off in two legs of the maze. When they collide, they head off down a third leg. Since the swarms always go in the same direction, if only one swarm is placed in the maze, it will always go down the same output leg as if it had collided with the other swarm and not double back up the other leg. In this way, the maze becomes an OR gate. If one or two swarms enter the maze, the output is always positive. One swarm OR another swarm in the maze equals a positive, otherwise negative.

The researchers also used another maze was in the shape of an X with a fifth vertical leg stuck running up from the center. In this maze, letting loose one swarm resulted in the swarm passing straight through the center and into the opposite leg of the X. If two two swarms are loosed, they collide in the center, sending them up through the center leg. This is the crab equivalent of an AND gate. One swarm going in provides a negative. Two provides a positive. One swarm AND another swarm equals positive, otherwise negative.

With these two gates, it would be theoretically possible to build more complicated logic gates and from there, full-fledged computers.

Currently, there are no plans to build a full-blown crab computer, but if seafood cybernetics ever does take off, this, they will say, it where it all began.

The research was recently outlined in a paper entitled Robust Soldier Crab Ball Gate  in the journal Complex Systems

Comments

Popular posts from this blog

Modular housing concept boasts 64 possible combinations

Italian Designer Gabriel Aramu has conceptualized a modular housing system that seems to offer endless possibilities. Dubbed "Sliding Hub," these prefabricated cubes join together to create a temporary housing solution for multiple situations. In the event that emergency shelters are required, the modules can be packed and transported to any destination. On arrival, the modules are easily joined together, with the flexibility to house individuals, small groups or large numbers without limitation. Each module incorporates an insulation system suitable for all kinds of weather conditions. In addition, the temporary accommodation units provide a comfortable standard of living, important to natural disaster victims. Constructed with steel reinforcements, numerous modules can be assembled together to create various sizes and shapes, whilst sliding them open creates large internal spaces. According to Aramu, the system can be configured 64 different ways, wh...

A Father and Son

Father and son relationship are typically formed like this.

NASA discovered two Earth-sized planets

Scientists have for the first time discovered two Earth-sized planets outside the solar system, orbiting a distant star resembling our sun. This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA's Kepler mission discovered the new found planets, called Kepler-20e and Kepler-20f. Kepler-20e is slightly smaller than Venus with a radius .87 times that of Earth. Kepler-20f is a bit larger than Earth at 1.03 times the radius of Earth. Venus is very similar in size to Earth, with a radius of .95 times that our planet. An artist's rendering shows a planet called Kepler-20e in this handout released December 20, 2011. An artist's illustration of Kepler-22b, a planet known to comfortably circle in the habitable zone of a sun-like star, in an image released by NASA on December 5, 2011. A diagram comparing our own solar system to Kepler-22, a star system containing the f...